
E-Mentoring for Software Engineering: A
Socio-technical Perspective

Erik H. Trainer, Arun Kalyanasundaram, James D. Herbsleb
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA

{etrainer, arunkaly, jdh}@cs.cmu.edu

Abstract—Mentoring is one of the most effective pedagogical
tools, holding great promise for software engineering education.
When done badly, however, it can lead to dysfunctional inter-
personal relationships and may turn off mentees from careers in
software engineering. In this qualitative interview-based study we
examine how socio-technical dimensions of software impact the
formation of social ties important for satisfying two goals of men-
torship, building technical skill and interpersonal development.
We find that mentees working on user facing, interdependent
software form a balance of ties that facilitate both goals,
while mentees working on non-user facing software mostly form
ties important for building technical skill. Work practices that
create opportunities for unstructured contact between mentees
and community members, such as code review in a mentee
cohort, can help to overcome this imbalance. Our findings have
important implications for task definition in software engineering
e-mentoring program schemes.

Keywords-E-mentoring; free and open-source software; tie
content; instrumental ties; expressive ties; qualitative methods.

I. INTRODUCTION

Mentoring is widely viewed as one of the most effective
measures in pedagogy [1]–[3], having become an international
priority [4] as evidenced by the thousands of institutional
programs and practices that include a mentoring component
[5]. Software engineering as an application area holds great
promise, given the mounting body of evidence of the effec-
tiveness of mentoring in science, technology, engineering, and
mathematics (STEM) fields [6], [7]. When situated within the
context of a complex real-world task, mentoring is one of the
most successful ways for learners to develop mastery [8], [9].
Exposure to such tasks helps mentees to develop more mature
mental models and problem solving strategies similar to those
used by experts [10], [11], and build confidence to participate
in the disciplines they wish to pursue.

There are other benefits to mentoring that are social in
nature. By bringing in new contacts and making personal intro-
ductions, mentors can help mentees gain access to individuals
in careers they aspire to join [6], [12], [13]. Mentoring also
helps learners develop important interpersonal skills [14], [15].
A focus on real-world tasks facilitates the development of
complex communication skills such as explaining, persuading,
negotiating, and building understanding [11].

E-mentoring, a computer-mediated variation on traditional
face-to-face mentoring, scales up mentoring, allowing mentees

to access more information and connect with more people
than traditional face-to-face mentoring allows [6], [13]. E-
mentoring is of particular relevance for open and collaborative
communities such as free and open-source software (FOSS)
because the work is conducted in a distributed way. Google
Summer of Code (GSoC), for instance, is an e-mentoring pro-
gram that aims to connect university students with established
members of FOSS communities, and give them real-world
software development experience that employers value [16].

The potential impact of e-mentoring has made it a subject
of much research. Research on e-mentoring thus far has
looked at phases constituting e-mentoring programs and their
importance [13], [17], as well as the positive outcomes of such
programs [6], [18]. Less research, however, has looked at task
definition for e-mentoring, that is defining the technical work
itself and the work practices that should be followed to com-
plete it. It would be very helpful to know how task definition
impacts the goals of mentoring, so that program organizers
and mentors can create a good mentoring experience.

This is an important area to address because mentoring
experiences that do not meet the goals of mentees [19] have
the potential to alienate mentees from communities of practice
[20] they hope to join. Such experiences can result in the
erosion of trust between mentor and mentee, low perceptions
of the effectiveness of their relationship, and reduced personal
satisfaction with the work [21]. They may also contribute to
greater intentions to withdraw from one’s current career path,
a concern of particular importance in STEM [22].

With free and open-source software development as its
setting, this qualitative, interview-based study reports on how
software project design (i.e., visibility to end users and in-
terdependence) and work practices (i.e., cohort code review,
virtual group meetings, and face-to-face meetings) influence
key goals of mentoring. We add to literature on e-mentoring
that these factors can be practically used to structure work to
provide a desirable mentoring experience. At the same time,
we contribute to literature on software as a socio-technical
system, which had previously only examined factors impacting
the structure of developers’ social networks. We offer rich,
qualitative evidence of the impact of technical work and
social practices on the content flowing through these networks.
Accessing this content is important for building technical skill
and making personal connections.

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering and Education Track

978-1-5386-2671-9/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEET.2017.19

104

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering and Education Track

978-1-5386-2671-9/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEET.2017.19

106

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering and Education Track

978-1-5386-2671-9/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEET.2017.19

107

In the next section, we review existing literature on e-
mentoring and introduce theory on tie content, our analytical
lens into a mentee’s interactions. We then describe our re-
search methodology, and present and discuss our findings in
the subsequent sections.

II. BACKGROUND

Mentorship, a relationship in which a more senior individual
(the mentor) provides guidance and support to a more junior
member (the mentee), is widely viewed as one of the most
effective measures in education [1]–[3]. When conducted using
electronic communications it is referred to as e-mentoring
[23]. It is widely held that e-mentoring retains the benefits
of traditional face-to-face mentoring [13]. At the same time e-
mentoring scales traditional mentoring up to provide mentees
access to more information and more people through increased
interactions with others [13], [24]. E-mentoring is particu-
larly relevant for large online communities like FOSS where
software is developed in an open and collaborative way. Suc-
cessful participation in FOSS requires not only understanding
technical aspects of the code, but the ability to communicate
effectively when engaged in such things as submitting code,
responding to code submitted by others, documenting code,
and managing conflict.

Research on e-mentoring thus far has largely looked at the
significance of key phases constituting e-mentoring programs
[13], [25], as well as the positive outcomes of such programs
[19], [26]. We will argue that understanding how to define the
tasks a mentee takes on is a neglected yet important design
consideration for e-mentoring programs.

A. e-Mentoring Program Components

Several studies thus far have identified the components of
an e-mentoring scheme [3], [13], [25]. Salmon [25] proposed
a five-stage model of e-mentoring consisting of access and
motivation, online socialization, information exchange, knowl-
edge construction, and development. Single and Single’s [13]
three-phase model includes planning, program structure, and
assessment. Both models highlight the importance of mentors
and mentees connecting and familiarizing themselves with
each other early on, focused training provided by the mentor
to the mentee, the inclusion of an e-moderator who can act
as a resource to both mentor and mentee, and reflecting on
and evaluating the learning process. An aspect highlighted by
Single and Single [13] not included in Salmon’s model [25] is
group e-mentoring, where participants listen in and learn from
other mentors and mentees by critiquing and offering feedback
on their work. In addition to obtaining help from people other
than their mentor, group e-mentoring can allow participants to
develop a greater affiliation with the e-mentoring program as
a whole [23].

B. e-Mentoring Program Outcomes

A significant benefit of such programs to the mentee is
the transfer of information and subject-matter [13], [19], [26].
When based around a complex, real-world task, mentoring is

one of the most effective ways for learners to develop technical
mastery. By practicing authentic tasks with expert mentors,
mentees cultivate cognitive processes beneficial for problem
solving, and demonstrate the legitimacy of their understanding
[8]. They develop more mature mental models of problem
solving strategies, and build confidence as “culturally relevant
members of a community” [10], [11].

In addition to learning about how to solve complex tasks,
e-mentoring helps mentees to develop interpersonal skills
important for teamwork and networking. When combined with
real-world tasks, e-mentoring facilitates the development of
communication skills such as explaining, persuading, negoti-
ating, and building understanding [11]. E-mentoring can also
facilitate the development of strong and meaningful personal
connections. For instance, mentees may come to trust and
appreciate their mentors in the context of working with them
on goal-oriented tasks [5], [21]. Through communication,
mentors may help mentees better understand, express, and
regulate their emotions [27]. Positive experiences including
the expression of social support can enable mentees to interact
with others more effectively [5]. These benefits can be partic-
ularly important for marginalized populations. Mentees with
disabilities, for instance, may be more willing than in face-
to-face mentoring to cultivate relationships since the Internet
makes their disabilities less visible [18].

It would be helpful to know more about how task def-
inition impacts these two important goals. The interactions
mentees have lead to technical mastery and the development
of interpersonal relationships, and these interactions flow from
the real-world tasks that mentees take on with their mentors.
A spontaneous tutorial, or help offered on a particular topic,
may help the mentee simultaneously build up knowledge and
create personal connections. These activities are not identical,
however. Social activities that help build familiarity may
not immediately enhance the mentee’s technical knowledge.
Answering a technical question will facilitate learning but not
necessarily build familiarity. Can both goals of mentoring be
satisfied simultaneously, or is there a tradeoff between them?

Done poorly, task definition may result in unfavorable atti-
tudes, strain on the mentoring relationship, and dissatisfaction
with the experience. Young and Perrewe [21] investigated
levels of met expectations in a mentoring relationship, showing
that exhibiting career and social support behaviors that meet
the expectations of a partner result in positive perceptions of
the relationship effectiveness and trust. Eby and Lockwood
[19] further substantiated the importance of examining met ex-
pectations in a qualitative study, documenting instances where
mentors failed to meet mentees’ expectations (e.g., “opening
doors” by introducing them to key people in their field) and
linking these unmet expectations to dissatisfaction with the
experience. Since people tend to respond more strongly to
bad experiences [28], badly structured e-mentoring may lead
to greater intentions to withdraw from one’s career path.

A mentee’s social network has important implications for
learning and interpersonal development, since social networks
facilitate and constrain the flow of resources between and

105107108

within groups [29]. Two concepts central to understanding this
flow are its structure and the content of the connections.

C. Tie Structure

Tie structure refers to the pattern of connections, often
called the network topology, among people in the network
[30]. One can also look at the ties associated with a specific
node in a social network. A node’s centrality [31], for which
there are several distinct measures, refers to its positioning
relative to other nodes in the network. For instance, someone
who has high degree centrality is tied to numerous people on a
team and is therefore said to be central in the social network.

D. Tie Content

The nature of the resources that flow through a social
network’s tie structure, called tie content, is equally important.
Tie content can be instrumental or expressive [30], [32]. Instru-
mental ties are pathways of work-related information, exam-
ples, advice, and introductions, and are therefore important for
task performance [30], [33]. Expressive ties reflect friendships,
and contain emotional content. They are considered important
conduits of social support [30], [32], [33].

Much of what we currently know about attaining technical
knowledge and interpersonal development is based on tie
structure. For instance, having network contacts with high
positions in a status hierarchy allows the learner to benefit
from their experience and greater understanding about how to
perform tasks [34]. A central person in the social network has
greater access to, and a larger amount of, information or social
support [35]. But understanding how to form ties with both
types of content is important as well, since this content shapes
the benefits mentees gain from their mentoring experience.
We need to understand, therefore, what factors contribute to
forming both expressive and instrumental ties.

E. Ties in Socio-technical Software Systems

Based on what we know about tie structure, research into
software as a socio-technical system provides evidence of
some factors that may be relevant. In a study of a geo-
graphically distributed software project, Cataldo and Herbsleb
[36] found that developers who worked on software tasks
that cut across numerous subsystems became more central in
the project’s communication network. Studying newcomers to
offshored legacy projects, Zhou et al. [37] found that working
on self-contained tasks not interdependent with the rest of the
system required few interactions with other developers. But as
newcomers learned more and worked on more central tasks,
they moved to the center of the communication network.

These studies have contributed to our understanding of
the impact of socio-technical factors on tie structure, but we
still know relatively little about their influence on tie content.
What project characteristics impact tie content? What social
processes impact tie content? How do project characteristics
and social processes interact? These gaps suggest that more
research is needed to uncover the relationships between
socio-technical factors and tie content with respect to FOSS

e-mentoring. We therefore aim to advance this line of research
by asking the following questions:

RQ1. How do technical task characteristics impact the
formation of instrumental and expressive ties by mentees?

RQ2. How do social task characteristics impact the for-
mation of instrumental and expressive ties by mentees?

III. METHOD

Our setting is Google Summer of Code (GSoC), a FOSS
e-mentoring program. GSoC aims to get university students
involved in real-world software development and enhance their
employment opportunities in areas related to their academic
pursuits [16]. Each year umbrella organizations apply to
Google to be eligible to participate. Umbrella organizations
are groups of FOSS organizations that work very closely, have
similar goals or communities, or produce similar products. For
instance, in 2015 the Python Software Foundation served as
an umbrella organization for SciPy and SymPy, Python-based
software for mathematics, science, and engineering. Google
gives accepted umbrella organizations slots for one or more
coding projects that university students apply to work on.
Umbrella organizations select students and assign mentors to
the projects. Google then pays accepted students stipends to
work on the projects over the summer.

A. Data Collection

We chose to focus our investigation on FOSS scientific
software, FOSS written by and for scientists. FOSS as a whole
has a varying mix of extrinsic and intrinsic incentives for
participation [38], [39]. In contrast, the primary incentive to
build scientific software is inherent in its purpose. To produce
scientific results, scientists need tools, and will invest time and
resources to create them [38], [39]. Restricting our sample to
scientific software helps us avoid the combined variance in
incentives of scientific software and all other FOSS.

Moreover, much effort has been devoted to educating a
diverse workforce in science, technology, engineering, and
mathematics (STEM). The advantage of looking at scientific
software is that it combines several of these high priority areas:
science, technology, and to an extent, mathematics.

To start, we chose GSoC umbrella organizations from year
2015. Of the 137 umbrella organizations, we identified 26
(19%) as scientific software-oriented by manually inspect-
ing entries in the GSoC project database (Google, accepted
projects 2015). To identify these organizations, we looked at
the “Name” field in the database for mentions of academic labs
developing software. We also examined the “Tags” field for
mentions of the domain in which the software was meant to be
used (e.g., “genomics”, “chemistry”). Finally, we read the list
of proposed projects on the web sites provided in the “Ideas”
field for descriptions of who would be using the software and
in what contexts.

We interviewed mentors as well as mentees. We expected
mentors to have additional insights into factors influencing

106108109

tie formation, for instance the GSoC project’s relationship
to ongoing work in the community and norms around com-
munication. To cover as many organizations as possible, we
randomly selected projects within each of the 26 organizations
and sent e-mail invitations to interview the associated mentees
and mentors. In total we received responses from 15 mentees
and 9 mentors coming from 16 out of the 26 organizations
(62%) and 20 projects. In four projects we spoke with both
mentee and mentor. Table I shows demographic information
for our participants. We assigned each participant an ID, shown
in the first column. The first character of that ID indicates the
participant’s role: “S” for student or “M” for mentor.

We conducted semi-structured interviews with participants.
Our goal was to identify instrumental and expressive ties that
existed by understanding the interactions that happened to
form those particular ties. Our general strategy was to identify
everyone with whom participants interacted across all phases
of GSoC, including proposal planning, the coding period, and
follow-up work. We then probed further to understand the
nature of their interactions. For instance, was the content of
these exchanges about work-related issues and problems or
were they more about encouragement and emotional support?
We gathered additional detail on such things as who initiated
the interactions, the frequency of the interactions, and their
significance to participants. Interviews lasted approximately
one hour, and were recorded and transcribed verbatim.

We encouraged participants to share additional materials
with us after the interviews to support the analysis process.
These materials included public communications with other
community members, self-published reports of their progress
throughout the summer, and project-related documentation.

B. Data Analysis

We applied standard qualitative analysis techniques [40] to
our interview data. We started with the conceptual categories
instrumental ties and expressive ties. Two members of our
research team defined a tie as a mention of having interacted
with another student, mentor, or someone else within or
outside the FOSS umbrella organization. We read the interview
transcripts to identify ties, and then open coded the specific
interactions constituting those ties. We also open coded the
transcripts to identify social and technical factors influencing
the creation of those ties. In parallel we wrote, shared, and
discussed descriptive memos about emerging themes. In the
next part of our analysis, we compared each code to other
examples and identified additional conceptual categories using
themes from our memos as support. We met weekly to discuss
our progress, and resolve occasional coding disagreements
by joint consensus. We continued this process in an iterative
manner until no new factors or tie content were being captured
by our emerging categories.

Our final codebook had 16 codes organized in a parent-child
hierarchy, with 4 parent and 12 child codes respectively (Table
II). For instance, the instrumental ties parent code included
child codes technical assistance and task clarifications. The
project design code included the child codes front end and

TABLE I
PARTICIPANT DEMOGRAPHICS. G = GENDER; C = COUNTRY; D =

EDUCATIONAL DEGREE PURSUED: UNDERGRADUATE, MASTERS, OR

DOCTORATE.

ID G C D ID G C D

S1 M IN U S13 M RU M

S2 M US D S14 M IN U

S3 M US M S15 M US U

S4 F IN U M1 M US -

S5 M TR M M2 M AM -

S6 M IN U M3 M US -

S7 M RO M M4 M US -

S8 M US D M5 M BE -

S9 M US M M6 M CZ -

S10 M IN U M7 M RO -

S11 M PT M M8 M US -

S12 M CA U M9 M US -

interdependent. We used the archival data participants shared
with us to triangulate and confirm the relationships identified
in our analysis. Our set of archival data included 423 online
forum posts, 367 comments from software issue trackers, 42
blog posts, 18 chat excerpts, and 37 project documents (e.g.,
proposals, design-mock ups, and so on).

IV. RESULTS

A. RQ1. How do technical task characteristics impact the
formation of instrumental ties and expressive ties by mentees?

The overarching technical factor we identified as impacting
instrumental and expressive ties was project design. We iden-
tified two dimensions of importance: front end vs. back end,
and modular vs. interdependent.

Front end projects are projects where the student’s code
changes are directly or indirectly expressed in a user facing
interface. Under this definition, both a standalone application
that a user interacts with directly and a performance optimiza-
tion that makes a user interface more responsive are both front
end projects. We consider projects not meeting this criterion
to be back end. Of the 20 projects, we classified 11 as front
end and 9 as back end.

Modular projects are projects where students did not
reuse existing libraries (10 projects). Interdependent projects
are projects where students did reuse existing libraries (10
projects). Sometimes, students and mentors did not decide to
reuse code until their GSoC projects were well underway. As
such we relied on students’ descriptions of their projects and
accounts of their interactions with others, in addition to GSoC
project summaries on their organization’s website to classify
the code’s structure.

As summarized in Table III, students working on front end,
interdependent projects form a balance of instrumental ties
via technical assistance and task clarifications (because others
dependent on their work can provide details of their use) and
expressive ties via appreciation from users (because the prod-
uct of their work is visual). In contrast, students working on
back end, modular projects form mostly instrumental ties via

107109110

TABLE II
FULL CODEBOOK WITH DESCRIPTIONS AND EXAMPLE QUOTATIONS.

Code Description Example Quotation
+Instrumental ties Social connections based on exchange of information

resources and knowledge to complete tasks
Technical assistance Mentee receiving technical help from project devel-

opers
“You should build symengine (C++ library) as a shared library:
cmake -BUILD_SHARED_LIBS=on. Otherwise if you build a
static library you will need to link each of the dependencies of
symengine (teuchos, gmp, etc.)”

Task clarifications Project developers, users giving advice on what
should be implemented, who will use it, other soft-
ware it should work with

“We do not plan to rely very much on this standalone because it based
an implementation which oracle abandoned :) So a GSoC project
based on our current standalone is not a good idea.”

+Expressive ties Social connections based on positive emotion, en-
couragement, and support

Appreciation Explicit acknowledgment and recognition of the
mentee’s contribution

“Very nice work! [. . .] Bravo to your GSOC project!”

Positive emotion Expression of pleasure or enjoyment “It really feels good to see the green check mark beside the commit.
Thank you [mentor] [other student] [S13] for helping me get this
working :blush:”

Personal comments Informal conversations not directly related to the
GSoC project

“I do hope the working late gets a bit better in the next weeks [. . .]
if the release I’m working on is tested and rolled out to production,
things hopefully get back to normal.”

+Project design Visibility of code to end users and relationship to
other projects

Front end Code directly or indirectly expressed in a visual user
interface

“So my project uses web graphics to plot the CALIPSO satellite LiDAR
profiles over the earth.”

Back end Code not expressed in a visual user interface “[My project] calculates the properties of fluids using Taylor expan-
sion [. . .]”

Interdependent Project reuses existing libraries under development
elsewhere

“We actually e-mailed some of the Siphon developers and said, ‘Hey,
we have some bugs we need to fix. Can you give us some pointers?’”

Modular Project does not reuse existing libraries under devel-
opment elsewhere

“These visualizations were done from scratch. [The user] doesn’t have
to download anything else.”

+Organization practices Work practices, patterns of behavior expected of
participants

Cohort code review Examinations of source-code performed by mentee
pairs, used to find and correct mistakes

“We made students review—cross review their code and make sugges-
tions and sort of—if somebody has answers, encourage them to talk
[. . .]”

Virtual group meetings Video conferences where current mentors and
mentees give updates on progress, announce issues,
and state next steps

“Weekly we have an IRC meeting. You have to summarize what you
have done in the last week, or what you are going to do in the next
week and what are the problems.”

F2F meetings Collocated events where mentees meet their men-
tors and other community members, present their
projects, and get feedback

“I was in a meeting of the organization this year and I talked with
some users to know what they need and I showed them my project to
see what—how can I help the final user with this project.”

technical assistance but lack opportunities to form expressive
ties via appreciation.

1) Front End vs. Back End: Students who worked on front
end projects tended to form expressive ties. They received
appreciation from potential users of their projects, even though
students working on both types of projects provided weekly
updates in blog posts and on their organizations’ mailing lists.
For instance, a student who worked on a front end project in
2014 and a back end project in 2015 noted a stark difference in
the amount of comments reflecting appreciation for her work:
“And like last year, I was getting more [comments] from even
the people who are less technical, so because you can see
the toolbar. You can see the editor. . . But this project, I am
not expecting so much. . . because you won’t notice it much.”
(S4), For example, an appreciative user left the following
comment on S4’s blog: “How can we get this new version?
This is exactly what I was finding missing in [name of umbrella
organization’s software].”

Students working on front end projects also formed in-
strumental ties with developers via technical assistance. The

visual form of front end projects facilitated technical help
from developers not only within the FOSS organization (S3,
M3, M4), but also outside it (S6). For instance, after a
student visualizing NASA satellite data using a third party
visualization library uploaded his application for testing, a
developer of that library was able to identify an issue in his
library because of the poor responsiveness of the interface:
“For some reason, the stars took a bit longer than usual to
load, which exposed issue #1829. The fix for this will be in
[third party library] 1.10, which comes out on June 1.”

Students working on back end projects also formed instru-
mental ties with developers via technical assistance. Some-
times, however, the help had to do with the scientific domain
to which the software would be applied (S5, M4, S8). Besides
their own mentors, students turned to and received assistance
from domain scientists and professors at their universities. In
one case, a student referencing mathematical models of brain
cells described in a research paper asked a professor at his
university for help because important details in the paper were
missing and the authors were unresponsive (S8).

108110111

TABLE III
FOR POSSIBLE VARIATIONS IN PROJECT DESIGN, THE TYPES OF CONTENT THAT FLOW THROUGH MENTEES’ SOCIAL TIES.

Modular Interdependent

Front End

Instrumental ties via: Instrumental ties via:
Technical assistance (developers) Technical assistance (developers)

Task clarifications (users, developers)

Expressive ties via: Expressive ties via:
Appreciation (users) Appreciation (users)

Back End
Instrumental ties via: Instrumental ties via:

Technical assistance (developers) Technical assistance (developers)
Task clarifications (developers)

In sum, students working on front end projects and students
working on back end projects formed instrumental ties primar-
ily through technical assistance. Because of the visual form of
their projects, students working in front end projects frequently
formed expressive ties via appreciation; students working on
back end projects did so only rarely.

2) Modular vs. Interdependent: We did not find evidence
that the absence or presence of interdependency in a GSoC
project was related to students forming expressive ties. As we
explained in the previous sub-section, the extent to which the
project is expressed in a user facing interface seemed to be
much more important.

Students working on modular projects formed instrumental
ties via technical assistance. These ties tended to be about
helping students understand and solve errors in the code
they had written, or helping them understand parts of the
organization’s codebase (S4, S10). As one student put it: “If
I asked something related to code, they’d [other developers]
give me the GitHub link that the file or the part of the code
in there, so like direct me to that part of the code.” (S4)

Students working on interdependent projects also formed
instrumental ties via technical assistance. Compared with
students working on modular projects, students working on
interdependent projects were able to learn more in depth about
their organization’s codebase as a result of their interactions
with developers (S8, S9). For instance, a student (S9) writing
an application programming interface (API) described how a
big part of his task was understanding buggy code written
by others: “We knew about some of these bugs, we didn’t
know their scope quite so much, because you think handling
exceptions for arithmetic operators; that’s an easy fix in some
file somewhere. It’s not.” (S9)

In response, he asked the developers of that code for
technical assistance in identifying the code causing the bugs.
Though this took substantial effort and time, he got familiar
with the codebase in more depth: “I understand the Cython
code a lot better” (S9), and felt that he learned about making
good software design decisions: “Better design principles is
something that I’ve been trying to get a handle on a lot
lately. . . this helped provide an avenue that would let me work
on that a bit more. . . knowing how to work with a buggy
codebase and choosing which battles to fight and which battles
to leave for later.” (S9)

Although our focus is on tie content, we note that the

network structures formed in interdependent projects were
different than those formed in modular projects. Students
working with interdependencies mentioned going to more
people for technical help, indicating that they formed more
instrumental ties with other developers compared with students
working on modular projects.

Unlike students working on modular projects, students
working on projects with interdependencies formed instrumen-
tal ties via task clarifications. This was useful for learning
about managing design decisions. One student working on
a broad range of issues in preparation for his organization’s
next software release constructed a list of all the downstream
functions that would be affected by his changes. Presenting
this list of functions on the mailing list led to “a lot of
discussion with the community” wherein the student was an
active participant (S12).

Working on projects with interdependencies also helped
students learn more about how their projects would be used
by others (e.g., complementary software), and what features
would be most useful (S11, S12, S13). For instance, a mentor
recalled that he and his student were torn between two design
approaches. It wasn’t until a student using their code posted a
bug report that they discovered the best solution: “I remember
we said, ‘okay, we don’t actually know what we’re gonna
do’. . . a significant amount of time later a different student
from the [organization] came up and said, ‘Hey, I need to do
this,’ and it was actually this exact same thing we did. So he
had an idea how we could do it and we did do it that way
because he was one of the people using that program. So he
was one of the users and also one of the students of the other
students. His suggestion made sense.” (M7)

In sum, students working on modular projects and students
working on interdependent projects each formed instrumental
ties via technical assistance. The students working on inter-
dependent projects, however, were able to learn more about
codebases in more depth and form instrumental ties via task
clarifications, which helped them gain insight into how to
make the software more generally useful. The absence or
presence of interdependency was not related to the formation
of expressive ties.

B. RQ2. How do social task characteristics impact the forma-
tion of instrumental and expressive ties by mentees?

The overall social factor influencing formation of instrumen-
tal and expressive tie was organization practices. Although

109111112

there are many practices that organizations used, participants
mentioned the following practices as having the most im-
pact on the personal connections they formed with others:
cohort code review, virtual group meetings, and face-to-face-
meetings. Table IV summarizes these findings.

1) Cohort Code Review: Some umbrella organizations re-
quired all of their current students to participate in two or
three code reviews. In this cohort code review, students and
mentors from all current GSoC projects in the organization
examined one or two files of code written by other students,
ran associated tests to assess code correctness, and commented
on specific lines of problematic code. These reviews resemble
features of group-e-mentoring [13], which allow participants
to listen in and learn from other mentors and mentees.

Cohort code review was uncommon (2 of the 16 organi-
zations used it), yet it was surprisingly helpful for building
expressive ties, going beyond simply helping to advance tech-
nical work as the name suggests. Students benefitted from the
wisdom and encouragement of other mentees. A student we
talked to told us that even though GSoC designates a period at
the beginning of summer as the “Community Bonding Period,”
much of the real bonding happened only after he started
participating in code reviews (S14). Of the students working
on back end projects, only those participating in cohort code
review formed expressive ties with other students and mentors.
In the example below one such student (S14) exhibits positive
emotion toward his reviewers after receiving suggestions about
how to resolve bugs in his code: “It really feels good to see
the green check mark beside the [code] commit. Thank you
[mentor] [other student] [S13] for helping me get this working
:blush: ” (GitHub issue comment)

Students and mentors also talked about how this flavor
of code review was a “fun exercise” that “helped break
psychological barriers” (M7) resulting from perceptions in
differences between the skill levels of students and other
students, and students and mentors. Code review improved
interactions between students in the same organization, making
it easier to ask them for help in the future (S13, M8, S14).

Cohort code review, combined with the reviewability [41]
and transparency [42] of GitHub issues facilitated forming
instrumental ties in which even students and mentors working
on other projects were able to offer technical assistance:
“[Other student] reviewed my code and found a bug that
related to outputting updated data. . . His review was very
thorough and helpful. He both pointed me on missing and
wrong docs and fixed some of them in his pull request. And
he also gave me idea about a notebook with an example that
should be created.” (S13’s blog entry)

2) Virtual Group Meetings: Shorter than code reviews in
duration, and taking place synchronously via chat rooms and
video conference, virtual group meetings provided occasions
for students to announce what they were working on, problems
they faced, and what they were planning to do next (S3,
S5, M3, S10, S13, M7, S14). Participants included students,
mentors, and developers, all of whom belonged to the same
umbrella organization.

TABLE IV
FOR EACH KIND OF ORGANIZATION PRACTICE, THE TYPES OF CONTENT

THAT FLOW THROUGH MENTEES’ TIES.

Practice Instrumental Ties via Expressive Ties via

Cohort Code Review
Technical assistance Positive emotion

(mentees) (mentees)

Virtual Group Meetings
Technical assistance Personal comments

(developers) (developers)

F2F Meetings
Task clarifications Appreciation

(developers) (users)

These meetings facilitated the formation of expressive and
instrumental ties. The informal nature of the practice provided
occasions for students to form expressive ties that acted as
conduits for personal comments, communications that were
off-topic or not directly related to project tasks (M3, S10).
These communications occurred in preparation for and follow-
ing meetings. For instance, students and developers exchanged
small talk about holidays:
Developer: happy heroes day :)
Student: thanks man. you too :D

They also shared personal information (S4, M7). For in-
stance, after a group meeting, a developer offered time man-
agement advice to a student, and opened up about his personal
work situation:
Developer: sleep is important too - and timezones are spoiling
the fun a bit ;) I do hope the working late gets a bit better in
the next weeks
Student: How? Ohh, working late in office
Developer: yep, if the release I’m working on if tested and
rolled out to production, things hopefully get back to normal
:)
Student: hmm, it’s ok, All the best :)

Students participating in group meetings also formed in-
strumental ties with others via technical assistance. These
meetings had a lower start-up cost [41] compared with code
review or sending e-mail. As a mentor told us: “Like email
just takes too long to write, craft and there’s a lot of back and
forth that’s not necessary.” (M1)

Often, students included a brief description and snippets of
code needed to illustrate problems. The brevity and contextual
information may have helped to lower the understanding cost
[41] for recipients, who often were able to quickly provide
help. For instance, when it was their turn to speak in the
meeting, one student said: “I get [link] this error now to restart
the service.”

A few moments after seeing this, a developer who was
present in the chat room offered a potential solution: “I think
you might also be having issues because you’re using the
Tomcat Monitor as well as the Windows server. . . it’s probably
better to just use one. Anyway, the problem is that your service
isn’t starting, so you need look at the event log to find out why.”

3) Face-to-Face Organization-Wide Meetings: In some
cases, e-mentoring is augmented with brief face-to-face meet-
ings because it can change the interactions mentors and

110112113

mentees have, and deepen the bonds among them [18]. Five
students (S4, S5, S8, S9, S11) met their mentors and other
developers and users in their organizations at community face-
to-face meetings. These events tended to happen in the months
prior to GSoC. Organizations invited accepted students to meet
community members, get feedback on their project ideas, and
present prototypes of their projects.

Students and mentors did not use the meetings to rapidly
advance development as studies of the use of face-to-face
meetings in distributed work might suggest [43], [44]. Rather
the meetings bookended students’ projects, giving them extra
preparation to hit the ground running during coding, and
appreciation for completed projects. These meetings facilitated
the formation of expressive and instrumental ties.

Participating in these meetings gave students working on
back end projects (S4, S5, S8, S9) opportunities to form
expressive ties via appreciation that were otherwise lacking
(see Table III). For instance, one student we spoke with met
her organization’s administrator, the person who oversees the
overall progress of a mentoring organization and its students,
at a reunion event: “I met our community head, so that was a
really nice experience. . . he works in U.S. Army and he shared
a bit on like how people react to our software and how they
appreciate it while using it. . . ” (S4)

Students participating in face-to-face meetings also formed
instrumental ties. An interesting difference in face-to-face
meetings, compared with cohort code reviews and group
meetings, was that students formed instrumental ties with users
via task clarifications. In particular, face-to-face meetings were
good opportunities to meet users and understand their needs.
As one student told us, he was able to find out about specific
problems users faced, and worked with developers to formulate
promising solutions: “For instance sometimes they [users]
have layers and maps that takes a lot of time to process and
when it’s processing the user can’t do anything in the program,
so it’s very good to have the opportunity to put some algorithm
to run and keep using the program.” (S11)

Although these meetings were not primarily focused on
advancing technical work, they provided occasions for students
to get core developers’ time, and dedicate that time to tech-
nical assistance and problem solving (S5, S6, S8, S9). These
meetings also had low formulation and start-up costs [41] that
students used to their advantage. Students cited the speed of
interactions as beneficial compared with e-mail or IRC (S5,
S9, S11). As one student said: “I got to sit down with [the
lead developer] and just do a lot of back and forth questioning
on why is this this way, what are we doing here, what does
this mean for the project as a whole, a lot of these different
things. Very, very distinctly we had one of the days for - it was
around the lunch hour we basically sat down for probably a
good 45 minutes and I would just fire question after question
and then he explained a bunch of stuff like that.” (S9)

V. DISCUSSION

In this study we aimed to understand how characteristics of
a FOSS development task influence the kinds of interactions

mentees completing that task have, and thus the technical and
social benefits they receive. We found that front end tasks
with interdependent code structures involve the creation of
balance of instrumental ties and expressive ties. In contrast,
back end tasks with modular code structures involve formation
of instrumental ties but relatively few expressive ties; practices
like cohort code review can boost the formation of expressive
ties under these conditions.

The present study makes two primary contributions. Firstly,
by showing how technical and social task characteristics im-
pact the content that flows through interactions mentees have,
we establish a link between the structure of an e-mentoring
task and the benefits mentees can expect to receive. We there-
fore extend literature on e-mentoring that had not previously
considered task definition as an important design consideration
for e-mentoring program schemes. Second, by considering
effects of task definition on tie content, we extend literature
on software as a socio-technical system that previously had
only looked at the effects of technical characteristics on tie
structure. We bring attention to other key technical factors
like the visibility of the project to end users, as well as social
processes, namely cohort code review, virtual group meetings,
and face-to-face meetings.

A. Implications for Practice

Our results have several implications for designing formal
FOSS e-mentoring programs. Firstly, our results bring atten-
tion to the importance of structuring the mentee’s task to bring
important learning and interpersonal benefits. With respect to
learning, we found evidence that mentees may want to tailor
their experience (S8, S9, S11, S12), e.g., “I wanted to have a
community that was big enough so that I could go to them for
questions and have the community itself provide some feedback
on my work.” (S12) There may be other students who want to
tailor their experience, but are not aware that they can do so.

The mentee’s desire to customize their experience should be
viewed in light of the goals and needs of the FOSS community
in which they intend to participate. Much of the time, mentee
tasks have a relationship to the codebase, be the part of
ongoing work (S12) or on the community’s roadmap to be
completed at a later date. This may make it impractical, for
instance, to modify a task so that it is front end rather than
back end, interdependent rather than modular to fit the desires
of the mentee. For example, if a mentee wants to work on a
back end task because of the knowledge they will gain about
the inner workings of the codebase but is concerned about not
being able to develop useful connections to the community,
it may be helpful for the mentee and mentor to think about
how they can provide social interactions around the task. One
of many possibilities would be scheduling streaming video
presentations whenever mentees reach a milestone, where they
report on what they have done and what they plan to do
next. Their mentors, other mentors and their students, and
eventual users of the software could watch the stream live and
comment as the presentation unfolds. The presentations could
be archived on a community forum so that anyone unable to

111113114

watch live could still see the progress being made and leave
comments. Hopefully events like this provide occasions for
information exchange, feedback, and praise.

Our findings also point to implications for technology
support that should be in place for assisting e-mentoring.
Social coding environments and synchronous chat performed
many of the needed functions, supporting mentees in asking
questions, getting feedback directly on their code, sharing
updates with their mentors and other community members,
and building relationships through informal interactions. An
additional way that technology could support the experience
is to assist mentors in recognizing when mentees become stuck
and need help. We observed that in some cases, lapses in
mentee-mentor communication would occur, and the mentor
would not find out about it until much later (M7, M9, S15).
One possibility might be to augment the interface of social
coding tools with a threaded “question window view” where
questions are primary entities. When a mentee gets stuck, they
can create a question which then appears in the mentor’s
interface as a notification. Tools like Ateleier [45] provide
features that resemble this. Another possibility that might
be worth exploring is instrumenting code editors to detect
inactivity or high churn, and alert mentees to the area of code
that the mentee is struggling with. In this way, questions might
be more actionable and urgent, with issues solved more swiftly.

B. Limitations and Future Work

One limitation of this study is its generalizability, as is
common with qualitative studies of this kind. GSoC is unusual
in that mentoring occurs around a single primary task, while
other forms of mentoring may involve a series of interrelated
or loosely related tasks, with the mentoring relationship lasting
for a longer period of time. The benefit of investigating a
single task, however, was that it allowed us to isolate effects
of different types of tasks on the formation of instrumental
and expressive ties, since each mentee had just one over the
summer. If we had considered multiple tasks being performed
by mentees in our analysis, it would have been difficult to
tease apart the impacts of one task from another. Focusing on
how to construct a portfolio of tasks that can better achieve
mentorship goals is an important next step.

GSoC mentoring does not occur in an organizational con-
text, where very often the goal is to retain skilled employees
and develop strong leaders within an organization. There is
also no expectation that mentees will continue to remain in a
long-term relationship with their mentors. GSoC e-mentoring
has more of a standalone flavor, where mentees are outsiders
looking for opportunities to prepare themselves for careers
elsewhere. As such, the GSoC experience is much more typical
of other e-mentoring programs, which tout the benefits of
overcoming time and distance constraints, access to a large
numbers of mentors and mentees, and informal, spontaneous
discussions [6]. We suggest, therefore, restricting generaliza-
tions made from this study to online mentoring programs.

We chose to study mentees working on scientific software,
which may be distinct from other kinds of FOSS. For instance,

scientific software developers have a different set of incentives
from many other kinds of communities [38], [39]. Members
of these communities may instead focus on establishing their
reputation rather than guiding mentees [46]. It would be inter-
esting for future research to explore the kinds of ties developed
in a broader survey of the FOSS community. Other research
methods that do not rely on self-reports of interactions, such
as archival analysis of rich mailing list archives, could further
serve to validate our findings.

VI. CONCLUSION

This study aimed to explore how e-mentoring task selection
impacts the interactions that mentees have, and the technical
and social benefits they can expect to receive. Using research
methods that offer rich, qualitative data, we found that front
end, interdependent projects facilitate the simultaneous forma-
tion of social ties important for technical mastery and interper-
sonal connections, while back end, modular projects primarily
facilitate the formation of ties important for technical mastery.
Work practices that create the opportunity for unstructured
contact between mentees and community members facilitate
the formation of ties important for interpersonal connections.
Examples are cohort code reviews, virtual group meetings, and
organization-wide face-to-face meetings. Our work contributes
both a practical dimension in advice for structuring software
engineering e-mentoring program schemes, as well as in
expanding our understanding of how software as a socio-
technical system impacts the content flowing through a social
network, not just the structure.

ACKNOWLEDGMENTS

This research was supported in part by National Science
Foundation awards 1064209, 1111750, 0943168, 1322278, and
1546393, the Alfred P. Sloan Foundation, and the Google Open
Source Programs Office. Thanks also to our participants, and
to our anonymous reviewers for their comments on an earlier
draft of this paper.

REFERENCES

[1] M. W. Lipsey and D. B. Wilson, “The Efficacy of Psychological, Educa-
tional, and Behavioral Treatment: Confirmation From Meta-Analysis,”
American Psychologist, vol. 48, no. 12, pp. 1181–1209, 1993.

[2] B. S. Bloom, “The 2 sigma problem: The search for methods of group
instruction as effective as one-to-one tutoring,” Educational Researcher,
vol. 13, no. 6, pp. 4–16, 1984.

[3] L. Akin and J. Hilbun, “E-Mentoring in Three Voices,” Online Journal
of Distance Learning Administration, vol. 10, no. 1, 2007.

[4] J. E. Girves, Y. Zepeda, and J. K. Gwathmey, “Mentoring in a Post-
Affirmative Action World,” Journal of Social Issues, vol. 61, no. 3, pp.
449–479, 2005.

[5] D. L. DuBois, N. Portillo, J. E. Rhodes, N. Silverthorn, and J. C.
Valentine, “How Effective Are Mentoring Programs for Youth? A
Systematic Assessment of the Evidence,” Psychological Science in the
Public Interest, vol. 12, no. 2, pp. 57–91, 2011. [Online]. Available:
http://psi.sagepub.com/lookup/doi/10.1177/1529100611414806

[6] H. Stoeger, X. Duan, S. Schirner, T. Greindl, and A. Ziegler, “The
effectiveness of a one-year online mentoring program for girls in
STEM,” Computers and Education, vol. 69, pp. 408–418, 2013.
[Online]. Available: http://dx.doi.org/10.1016/j.compedu.2013.07.032

[7] J. McCarthy, “International design collaboration and mentoring for ter-
tiary students through Facebook,” Australasian Journal of Educational
Technology, vol. 28, no. 5, pp. 755–775, 2012.

112114115

[8] A. Collins, J. S. Brown, and S. E. Newman, “Cognitive apprenticeship:
Teaching the crafts of reading, writing, and mathematics,” Knowing,
learning, and instruction: Eassays in honor of Robert Glaser, vol. 18,
pp. 32–42, 1989.

[9] S. A. Ambrose, M. W. Bridges, M. Dipietro, M. C. Lovett, and M. K.
Norman, How learning works: Seven research-based principles for smart
teaching. John Wiley & Sons, 2010.

[10] Boz, “Facebook Engineering Bootcamp,” 2009. [On-
line]. Available: https://www.facebook.com/notes/facebook-engineering/
facebook-engineering-bootcamp/177577963919/

[11] M. M. Lombardi, “Authentic Learning for the 21st Century: An
Overview,” Educause, 2007.

[12] A. A. Friedman, M. Zibit, and M. Coote, “Telementoring as
a Collaborative Agent for Change,” The Journal of Technology,
Learning and Assessment, vol. 3, no. 1, 2004. [Online]. Available:
http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1654

[13] P. B. Single and R. M. Single, “E-mentoring for social equity: review
of research to inform program development,” Mentoring & Tutoring,
vol. 13, no. 2, pp. 301–320, 2005.

[14] A. Haas, C. Tulley, and K. Blair, “Mentors versus masters: Women’s
and girls’ narratives of (re)negotiation in web-based writing spaces,”
Computers and Composition, vol. 19, no. 3, pp. 231–249, 2002.

[15] R. Brown and S. Dexter, “E-Mentors: Connecting Caring Adults and
Kids Through E-mail,” vol. 46, no. 6, pp. 60–63, 2002.

[16] Google, “What is Google Summer of Code?”
[Online]. Available: http://write.flossmanuals.net/gsocstudentguide/
what-is-google-summer-of-code/

[17] J. Headlam-Wells, J. Gosland, and J. Craig, “There’s magic in the web:
e-mentoring for women’s career development,” Career Development
International, vol. 10, no. 6/7, pp. 444–459, 2005.

[18] C.-N. Shpigelman, P. L. (Tamar) Weiss, and S. Reiter, “E-Mentoring
for All,” Computers in Human Behavior, vol. 25, no. 4, pp. 919–928,
2009. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0747563209000405

[19] L. T. Eby and A. Lockwood, “Protégés’ and mentors’ reactions to
participating in formal mentoring programs: A qualitative investigation,”
Journal of Vocational Behavior, vol. 67, no. 3, pp. 441–458, 2005.

[20] J. Lave and E. Wenger, Situated learning: Legitimate peripheral partic-
ipation. Cambridge University Press, 1991.

[21] A. M. Young and P. L. Perrewe, “What Did You Expect? An
Examination of Career-Related Support and Social Support Among
Mentors and Proteges,” Journal of Management, vol. 26, no. 4, pp.
611–632, 2000. [Online]. Available: http://jom.sagepub.com/content/26/
4/611.short

[22] NSF, “Shaping the future: New expectations for undergraduate education
in science, mathematics, engineering, and technology,” National Science
Foundation, Tech. Rep., 1996.

[23] P. B. Single and C. B. Muller, “When Email and Mentoring Unite: The
Implementation of a Nationwide Electronic Mentoring Program,” in Cre-
ating Mentoring and Coaching Programs, L. Stromei, Ed. Alexandria,
VA: American Society for Training and Development, 2001, no. 1, pp.
107–122.

[24] L. L. Bierema and S. B. Merriam, “E-mentoring: Using Computer Me-
diated Communication To Enhance the Mentoring Process.” Innovative
Higher Education, vol. 26, no. 3, pp. 211–227, 2002.

[25] G. Salmon, A. Things, G. Salmon, B. Distance, M. Zoos, L. Futures,
and S. Queensland, E-moderating: The Key to Teaching and Learning
Online, 2nd ed. London: RoutledgeFalmer, 2004.

[26] L. L. Bierema and J. R. Hill, “Virtual Mentoring and HRD,” Advances
in Developing Human Resources, vol. 7, no. 4, pp. 556–568, 2005.

[27] D. J. McDowell, M. Kim, R. O’Neil, and R. D. Parke, “Children’s
emotional regulation and social competence in middle childhood: The
role of maternal and paternal interactive style,” Marriage & Family
Review, vol. 34, no. 3-4, pp. 345–364, 2002.

[28] R. F. Baumeister, E. Bratslavsky, C. Finkenauer, and K. D. Vohs, “Bad

Is Stronger Than Good,” Review of General Psychology, vol. 5, no. 4,
pp. 323–370, 2001.

[29] D. J. Brass, “Being in the Right Place: A Structural Analysis of Indi-
vidual Influence in an Organization,” Administrative Science Quarterly,
vol. 29, no. 4, pp. 518–539, 1984.

[30] P. Balkundi and D. A. Harrison, “Ties, Leaders, and Time in Teams:
Strong Inference About the Effects of Network Structure on Team
Viability,” Academy of Management Journal, vol. 49, no. 1, pp. 49–68,
2006.

[31] J. Scott, Social Network Analysis, 3rd ed., K. Metzler, Ed. Thousand
Oaks, CA: SAGE Publications, Inc., 2012.

[32] J. R. Lincoln and J. Miller, “Work and Friendship Ties in Organizations:
A Comparative Analysis of Relation Networks,” Administrative Science
Quarterly, vol. 24, no. 2, pp. 181–199, 1979.

[33] H. Ibarra, “Personal Networks of Women and Minorities in
Management: A Conceptual Framework,” Academy of Management
Review, vol. 18, no. 1, pp. 56–87, 1993. [Online]. Available:
http://amr.aom.org/cgi/doi/10.5465/AMR.1993.3997507

[34] E. W. Morrison, “Newcomers’ Relationships: The Role of Social Net-
work Ties During Socialization,” Academy of Management Journal,
vol. 45, no. 6, pp. 1149–1160, 2002.

[35] P. S. Adler and S.-w. Kwon, “Social Capital: Prospects for a New
Concept,” Academy of Management Review, vol. 27, no. 1, pp. 17–40,
2002.

[36] M. Cataldo and J. D. Herbsleb, “Communication Networks in
Geographically Distributed Software Development,” in Proceedings
of the 2008 ACM conference on Computer supported cooperative
work, vol. 18, no. 4. ACM, 2008, pp. 579–588. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1460563.1460654

[37] M. Zhou, A. Mockus, and D. Weiss, “Learning in offshored and legacy
software projects: How product structure shapes organization,” in ICSE
Workshop on Socio-Technical Congrunce, 2009. [Online]. Available:
http://mockus.org/papers/invconway.pdf

[38] J. Howison and J. D. Herbsleb, “Scientific Software Production: Incen-
tives and Collaboration,” in Proceedings of the ACM 2011 conference
on Computer supported cooperative work. ACM, 2011, pp. 513–522.

[39] ——, “Incentives and Integration in Scientific Software Production,” in
Proceedings of the 2013 conference on Computer supported cooperative
work. New York, New York, USA: ACM, 2013, pp. 459–470. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2441776.2441828

[40] J. Corbin and A. Strauss, Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory, 4th ed. Thousand
Oaks, CA: SAGE Publications, Inc., 2014.

[41] H. H. Clark and S. E. Brennan, “Grounding in Communication,” in
Perspectives on Socially Shared Cognition, L. B. Resnick, J. M. Levine,
and S. D. Teasley, Eds. Washington, DC: APA, 1991, pp. 127–149.

[42] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social Coding in
GitHub: Transparency and Collaboration in an Open Software Repos-
itory,” in Proceedings of the ACM 2012 conference on Computer
Supported Cooperative Work. ACM, 2012, pp. 1277–1286.

[43] S. Teasley, L. Covi, M. Krishnan, and J. S. Olson, “How Does Radical
Collocation Help a Team Succeed?” in Proceedings of the 2000 ACM
conference on Computer supported cooperative work. ACM, 2000, pp.
339–346. [Online]. Available: http://dl.acm.org/citation.cfm?id=359005

[44] E. H. Trainer, A. Kalyanasundaram, C. Chaihirunkarn, and J. D. Herb-
sleb, “How to Hackathon: Socio-technical Tradeoffs in Brief, Intensive
Collocation,” in Proceedings of the 19th ACM Conference on Computer-
Supported Cooperative Work & Social Computing. ACM, 2016, pp.
1118–1130.

[45] R. Suzuki, N. Salehi, M. S. Lam, J. C. Marroquin, and M. S. Bern-
stein, “Atelier: Repurposing Expert Crowdsourcing Tasks as Micro-
internships,” Chi 2016, 2016.

[46] D. R. Musicant, Y. Ren, J. A. Johnson, and J. Riedl, “Mentoring in
Wikipedia: A Clash of Cultures,” in Proceedings of the 7th International
Symposium on Wikis and Open Collaboration. ACM, 2011, pp. 173–
182.

113115116

